LETTER TO THE EDITOR
Medicine Science 2017;(.):…

Isolated unilateral hypoglossal nerve paralysis: a case report

Mehmet Guney Senol¹, Mustafa Erkan², Hakan Tekeli¹, Tansel Kendirli¹

¹ Sultan Abdülhamit Han Training and Research Hospital, Neurology Service, Istanbul, Turkey
² Sultan Abdülhamit Han Training and Research Hospital, Orthodontic Service, Istanbul, Turkey

Received 18 March 2017; Accepted 07 May 2017
Available online 25.06.2017 with doi: 10.5455/medscience.2017.06.8639

Abstract
Isolated unilateral hypoglossal nerve paralysis is a rare condition. The etiologic factors that may cause this are cancer metastases, infection, endocrine, neurological, autoimmune and vascular reasons. It has been reported that it can develop after head-neck trauma [1,2]. A 56-year-old male patient complained of swelling, speech impairment and biting the left side of the tongue for 2 years.

Keywords: Hypoglossal nerve, paralysis, MRI, CT

Case Report
Isolated unilateral hypoglossal nerve paralysis is a rare condition. The etiologic factors that may cause this are cancer metastases, infection, endocrine, neurological, autoimmune and vascular reasons. It has been reported that it can develop after head-neck trauma [1,2]. A 56-year-old male patient complained of swelling, speech impairment and biting the left side of the tongue for 2 years. Earlier in the history of 20 years he had a history of head trauma to the back side with an ax. On neurological examination, the tongue was deviated to the right side in the mouth and slightly deviated to the outside of the mouth, and the left side of the tongue was atrophic (Figure 1A). Uvula on midline, gag reflex + / +, the presence of fasciculation was seen on the left side of the tongue. Cranial MRI coronal section T2 sequences, there were atrophic fatty changes in the left tongue half (Figure 1B) and irregularity in the hypoglossal canal in the axial section T2 sequences (Figure 2A). In addition, in Cranial CT, a fractured sekonder irregularity (previous head trauma) was observed in the occipital bone posterior to the occipital condyle (Figure 2B).

Figure 1. Atrophy is observed in the left tongue of the patient (A). Axial sections of the cranial MR T1 sequence show atrophic changes in the left tongue.

*Corresponding Author: Mehmet Güney, Şenol, Sultan Abdülhamit Han Training and Research Hospital, Neurology Service, Istanbul, Turkey.
E-mail: mgrsenol@yahoo.com
Figure 2. The cranial MR T2 axial images irregularities in the left hypoglossal canal (A) and cranial CT in the right hypoglossal canal irregularities in the left hypoglossal canal with normal (red circle) and shortness seems (B).

References
