Intramedullary K-wire fixation: A feasible and effective technique in treatment of pediatric distal radius fractures

Yusuf Erdem ORCID: 0000-0002-8685-2356
Cagri Neyisci ORCID: 0000-0001-8481-7808

Gulhane Training and Research, Department of Orthopaedia and Traumatology, Hospital, Ankara, Turkey

Received 18 October 2018; Accepted 27 November 2018
Available online 08.02.2019 with doi:10.5455/medscience.2018.07.8979

Abstract
In this research we aimed to report the clinical and radiological results of a retrospective study performed on 6 children with severely displaced distal radial metaphyseal and diametaphyseal fractures, who were treated with percutaneous intramedullary Kirschner wire (K-wire) fixation. A total of 6 children with distal unstable radius fractures, all of whom have visible physeal plate, were treated as an inpatient at our clinic January 2016 to June 2017. The average age was 8 years (range, 7–9 years). The fractures were fixed with two percutaneous intramedullary K-wires of 1.5-2 mm in diameter either transepiphyseally in three of them or both transepiphyseally and transcortically in the remaining three. Operative and short follow-up outcomes were assessed. The average operation time was 20 min (range, 15-25 min). Additional below-the-elbow splint was used in all cases for 3 weeks postoperatively. K-wires were removed after 6 weeks in all cases. Bone union was achieved at an average time of 4 weeks (range, 3-6 weeks) in all cases. No complication including malunion or early epiphyseal closure of the distal radius was identified at mean follow-up of 13 months (range, 4-18 months). Results of this study showed that reduction and osteosynthesis of distal displaced radius fractures in children by percutaneous flexible intramedullary K-wire fixation technique have many advantages regarding the maintenance of the stable construct with easy, minimally invasive and quick application. We thought that this method is a reliable treatment option for pediatric distal unstable radius fractures.

Keywords: Unstable radius fracture; intramedullary fixation; pediatric

Introduction
Pediatric distal forearm fractures are common injuries and the vast majority of which are treated by closed reduction and casting [1]. However in displaced and angulated types, regular closed traction and manipulation technique may not be enough lonely, thus requiring operative treatment and most commonly stabilized by percutaneous Kirschner (K)-wires.

K-wire fixation has higher advantages in simplicity of placement, ease of removal and the limited risk of physeal injury as regarding not to endanger the bone growth. In conventional pinning technique, K-wire is inserted just proximal or through the distal radial physis and transfixed across the fracture site [2,3]. However correction of angulation via conventional pinning is somehow difficult because the entry point of crossed K-wires are very close to the fracture line where the marrow cavity is getting narrower in this area. Moreover repeated insertion trials of K-wires could possibly cause iatrogenic fracture which makes the internal fixation harder. On the other hand classical elastic stable intramedullary nailing (ESIN) technique which is also widely used in the treatment of pediatric forearm fractures, is mostly recommended in transverse fractures of the long bone diaphysis or those on the border of diametaphyseal junction. Stable reduction of the metaphyseal region with this technique is difficult because the distal segment is too short and wide which may not be reduced with the asymmetrical insertion of the nail entry in most of the cases. [4-6].

Considering this facts, we looked for a solution which eliminates these problems. In our report, we would like to introduce and present the results of our distal transphyseal intramedullary fixation technique for severely displaced pediatric distal metaphyseal or metadiaphyseal radial fractures.

Material and Methods
From January 2016 to June 2017, 6 patients (4 girl, 2 boy) with an
average age of 8 years (range, 7-9) who has unstable distal radius fractures were included the study. Reduction with traction was applied as first line treatment as usual at the emergency department, however the desired anatomical reduction has not been achieved as expected. Surgical intervention was decided in all patients after an attempt of closed reduction in which the stable retention could not achieved. After receiving approval form our instutional review board, parents were informed and consented verbally that their children’s data concerning the injuries, treatments and prognoses would be submitted for publication. 4 patients have metaphyseal, 2 patients have diaphyseal metaphyseal fractures without any comorbid fractures. 1.5 or 2 mm. Kirshner wires were used percutaneously depending on the patient’s physical sizes. First K-wire was inserted transepiphysseally into the medullary canal of the radius through the radial styloid prior to the second wire which was inserted through the end of the distal radial cortex, just located medial to Lister tubercle in 3 patients (Figure 1) and transepiphysseally at the same location in 3 patients (Figure 2). Just after K-wire insertion points were obtained, K-wires were reversed and the blunt end of the K-wires were pushed through the drilled holes by controlled handheld force. Intramedullary K-wires reduced the distal fragment to more anatomic position by the principle of leaning the opposite cortex of the proximal fragment. After confirmation of the stability and reduction by fluoroscopy, the distal ends of the K-wires were bent and cut to the proper length outside the skin. In case of difficulty in proximal part reduction due to spike of the fracture site or soft tissues, reduction maneuver was achieved by the lever arm effect of Schanz, applied dorsally. Distal ulna fractures were aligned properly after the correction of radius fractures (Figure 3). At the end, below-the-elbow splint was applied to all patients for 3 weeks postoperatively. The patients and parents were taught about the wire site care. Patients were followed-up 1-3 and 6 weeks after discharge from the hospital, checking for the course of bone healing and complications.

Figure 1. a,b) Patient 1, a 7-year-old girl with a distal metaphyseal radius and ulna fracture in the left forearm which can not be reduced conservatively. c,d) The radius fracture was fixed by K-wire pinning in which one of the pin was inserted transepiphysseally while the other was inserted transcortically. e,f) The entry points of the wires outside the skin.

Figure 2. K-wires were inserted through the radial styloid (a) and the posteromedial end (b) of the distal epiphysis in 3 patients and transcortically (c) in 3 patients. These wires reach the dorsal and volar cortex, respectively.

Figure 3. Patient 2, a) Intraoperative picture of the transepiphysseal entry point of the wire. b) Reduction was achieved by levering the proximal part with Schanz applied dorsally where the reduction of the proximal part can not be obtained. c) The distal ends of the wires were bent outside the skin.

Results

The mean follow-up period was 13 months (range, 4-18 months). The operation was performed under general anesthesia in all cases. The average operation time was 20 min (range, 15-25 min). Bone healing was observed at an average time of 4 weeks (range, 3-6 weeks) and K-wires were removed with local anesthesia after 6 weeks in all patients (Table 1). On final radiographs just before K-wire removal, there was no translation or angulation in any direction and all patients achieved full wrist flexion, extension and forearm rotation. Moreover postoperative complications, such as refracture, loss of alignment, functional deficit of wrist and early epiphyseal closure of the radius were not observed (Figure 4).
Table 1. Patient Summary

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (years)</th>
<th>Sex</th>
<th>Follow-up (months)</th>
<th>Fracture type</th>
<th>Comorbidity</th>
<th>Anesthesia</th>
<th>Surgery time (minutes)</th>
<th>K-wire diameter (mm)</th>
<th>K-wire removal (weeks)</th>
<th>Complication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>F</td>
<td>18</td>
<td>Radius metaphysis</td>
<td>Distal ulna</td>
<td>General</td>
<td>20</td>
<td>15</td>
<td>6</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>F</td>
<td>16</td>
<td>Radius metaphysis</td>
<td>Distal ulna</td>
<td>General</td>
<td>25</td>
<td>15</td>
<td>6</td>
<td>N</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>M</td>
<td>16</td>
<td>Radius diametaphysis</td>
<td>N</td>
<td>General</td>
<td>25</td>
<td>20</td>
<td>6</td>
<td>Minimal AP translation</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>F</td>
<td>15</td>
<td>Radius metaphysis</td>
<td>N</td>
<td>General</td>
<td>20</td>
<td>15</td>
<td>6</td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>F</td>
<td>10</td>
<td>Radius diametaphysis</td>
<td>N</td>
<td>General</td>
<td>15</td>
<td>15</td>
<td>6</td>
<td>N</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>M</td>
<td>4</td>
<td>Radius metaphysis</td>
<td>Distal ulna</td>
<td>General</td>
<td>15</td>
<td>20</td>
<td>6</td>
<td>N</td>
</tr>
</tbody>
</table>

Discussion

Management of distal forearm fractures in pediatric population is challenging and more importance should be paid to pediatric fractures than adult fractures regarding treatment strategy. The important factors that need to be considered before selecting the appropriate treatment strategy are the age of child, duration of the healing time, and the initial position of the fracture site for the estimated remodeling potential and reintervention if required. Also parents’ anxiety during the treatment should be taken into account.

The optimal treatment should include the maintenance of the reduction throughout the fracture healing period whether by surgery or conservative intervention. A 3-point molded cast application may not be enough in unstable distal metaphyseal fractures, especially in the course of advanced swelling and displacement due to the nature of fracture mechanism. Most of the severely displaced radius fractures are seen in Galeazzi-equivalent variants in pediatric population. High-velocity trauma may damage the distal ulna and radioulnar ligaments additionally in which the cast application alone as a definitive treatment may cause poor functional outcomes in the future [7].

Percutaneous K-wire pinning is recommended for severely and completely displaced fractures [8]. Several K-wire pinning techniques have been described for distal radius fractures which challenges due to the presence of physis and the size of the bone [9,10]. Kapandji [11] defined intrafocal pinning for physeal fractures of the distal radius to protect the growth plate from iatrogenic injury, however this technique may put adjacent neurovascular structures and ligaments at risk [9]. Moreover ensuring the stable K-wire fixation with cross pinning without penetrating the physeal plate is technically demanding due to long distance to the fracture site which is also narrower site of the bone. Also difficulty of opposite cortex penetration of the bone at an optimal distance and the spread of the pins at the fracture site may not be sufficient to achieve the stability both in anteroposterior and lateral plans [2,12].

ESIN has been accepted as an option in case of such difficulties mentioned above [13-15]. ESIN is generally used to stabilize the unstable diaphyseal and diametaphyseal fractures with high utilization rate, however three point stabilization can not be provided in the distal metaphyseal fractures due to the short distal fragment [9,12]. Varga et al. used short, double elastic nail fixation to eliminate the failure of the classical ESIN method, however the more rotational stability was achieved with thicker nails, and [16]. Flexible double intramedullary K-wire pinning was successfully applied to distal metaphyseal and diametaphyseal radius fractures in our study, moreover comorbid ulna fractures in half of the patient population were managed conservatively which were considered incomplete and distal radioulnar stability was stable. We can explain this phenomenon with ligamentotaxis effect of ensuring sufficient fixation in more anatomical position at the fracture site. Our technique was similar to Py-Desmanet procedure [17,18], whereas our insertion point for the medial pin was located just at the end of the distal cortex of the radius, not at the tip of the posteromedial physis as described by Py-Desmanet’s method. So the second pin in our study was not transphyseal, it was cortical. Moreover the pins did not push forward to the radial head or physis, unlike the Py-Desmanet’s technique. After drilling the insertion points, we reversed the K-wires and push the blunt tips of the K-wires by controlled handheld force intramedullary, so the possibility of the opposite cortex penetrating of the bone and the thermal injury of the physis were eliminated. This is considered as the last dissimilarity of our technique. On the other hand no need for skin incision, soft tissue dissection and further anesthesia for nail removing unlike Varga et al.’s technique in which the implants
were sank under the skin are considered as another advantages of our technique.

Intramedullary insertion of the K-wires maintained a spring effect where the distal fragment moved to reduced position in our technique. Our technique allowed a micromotion at the fracture site, which stimulates the formation of callus. In this technique we have observed only mild complications like skin irritations which were caused by the end of the dorsally inserted and relatively too short K-wires outside the skin. However we hypothesize that this problem can be attributed to improper cutoff of K-wires during the learning curve period of the technique. When distal end of the K-wires are cut in a maximally palmar-flexed position of the wrist and left long outside the skin, this irritation problem ceases. Also minimal translation was observed in one case, however as long as the physes were open, remodeling occurred. Physeal arrest or growth disturbance was not observed in our patients, however in some studies a risk of premature physeal closure was reported after transphyseal pinning of the distal radius fractures [19,20].

Conclusion

In conclusion, intramedullary K-wire fixation technique is easy and a reliable for treatment of displaced distal radial fractures in pediatric population. Our follow-ups were relatively short, and further prospective and long-term studies are required to support our experience.

Competing interests

The authors have no commercial associations or sources of support that might pose a conflict of interest. The authors declare no conflict of interest.

Financial Disclosure

The present study did not receive any external funding. The authors, their immediate families, and any research foundations with which they are affiliated have not received any financial payments or other benefits from any commercial entity related to the subject of this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References