Comparison of the arterial blood pressure of the arm, forearm, and ankle of smokers under general anesthesia

Yasin Tire¹, Mehmet Sargin², Aydin Mermer¹

¹University Of Health Sciences Konya Training and Research Hospital, Department of Anesthesiology and Reanimation, Konya, Turkey
²Selcuk University Medical Faculty, Department of Anesthesiology and Reanimation, Konya, Turkey

Received 26 February 2019; Accepted 30 April 2019

Abstract
Arterial blood pressure (ABP) measurement of forearm and ankle have been suggested as an alternative site to measure blood pressures when the upper arm is unavailable. However, there is little evidence utilizing clinical populations to support this topic. The simultaneous measurement method is used for the left upper arm, forearm, and ankle blood pressures. Participants were eligible if they were aged 18 years or older, able to consent, and able to have blood pressures measured on their left arm while lying at a 45° angle. The independent sample t-test method of statistical analysis was used, for the systolic, diastolic and mean arterial pressure defined. The ankle measure overestimated systolic (mean difference 10.8 mmHg, 95% limits of agreement ±12.9 mmHg), diastolic (mean difference 14.7 mmHg, 95% limits of agreement ±8.4 mmHg), and mean arterial pressures (mean difference 13.0 mmHg, 95% limits of agreement ±8.9 mmHg). The systolic, mean and diastolic measure were no significantly different between smokers and nonsmokers groups. ABP disparity was associated with groups. In the study, ABP measurements from the arm which is a standard method with forearm and ankle ABP measurements; no differences were observed when comparing the groups that are smokers and non-smokers.

Keywords: Blood pressure, smokers, general anesthesia

Introduction
During general anesthesia, measurement of arterial blood pressure (ABP) is indispensable. ABP analysis is carried out indirectly using a non-invasive oscillotonometric method which is usually placed on the arm. In some cases, it is not possible to put the cuff on the arm. If the arm cannot be used due to intravenous (IV) way or surgical place intervention, it may be placed on the forearm or ankle alternatively [5].

Clinicians need to know the functionality of alternative ABP measurement places in terms of both efficiency and correctness. Prior studies have noted that ankle measurement of ABP than on the arm. [1,2]. In contrast, other studies examining alternative routes for ABP measurement used several patients and conditions [2,3], but in these studies, alternative sites were not simultaneously compared [4], but a suitable statistical approach was not used [3,5] or continuous did not evaluate availability.

In our study, we aimed to evaluate the accuracy, tenderness, and tendency of ABP, forearm, and ankle simultaneous ABP measurements in smokers and non-smoker general anesthesia patients.

Material and Method
Participants
After the approval of the Ethics Committee of Necmettin Erbakan University Meram Medical Faculty (2017/873), the patient’s consent was obtained for participation in the study and 50 consecutive patients were included to the study who underwent general anesthesia. The age range of patients was between 18-65 years. We included at least one pack of cigarette users per day for more than 20 years in a group of regular smokers group. Patients with recognized heart or vascular disease and those with skin lesions that may cause problems in ABP measurements were excluded from the study. Preoxygenation with 100% oxygen was followed by induction of anesthesia with propofol (0.5 mg/kg), fentanyl (1.5 mcg/kg), rocuronium (0.6 mg/kg), and endotracheal intubation. Fentanyl, propofol, and rocuronium were administered for the maintenance of anesthesia. ABP measurements were noted intraoperatively in the arm, forearm and ankle at 5 minute periods.

*Corresponding Author: Yasin Tire, University of Health Sciences Konya Training and Research Hospital, Department of Anesthesiology and Reanimation, Konya, Turkey E-mail: dryasintire@hotmail.com
All measurements were performed in patients in the supine position. Arm position was 90 degree according to the vertical axis of the body.

Measurements

ABP was measured applying a calibrated standard anesthetic monitor (S / 5 anesthesia monitor; GE Healthcare, Waukesha, WI, USA). Three monitors were applied simultaneously to achieve simultaneous measurements and were randomly selected between the arm, forearm, and ankle using a random numbers table. Small, standard and large three cuff sizes were used. The size of the ABP cuff was chosen to cover at least 40% of the measured limb length [1]. Alternative arterial blood pressure measurement sites includes forearm (the radial artery region on the lateral side of the forearm) and ankle (the posterior tibial artery is located on the back of the medial malleolus).

Statistical methods

The anesthesia monitor noted systolic blood pressure (SBP) and diastolic blood pressure (DBP) measurements; this data was recorded in an Microsoft Excel® (Microsoft Office version 365, 2010, Redmond, WA, USA) database and provided for statistical analysis. Based on related studies attended earlier, the sample had a power of 80% to identify differences in a significance level of 5%, corrected for multiple comparisons between three measured zones, with more than 50 patients. This sample size was obtained by calculating the ± 0.4 SD measurement differences with the reliability limits and the 95% agreement limit.

Measurements of arterial blood pressure repetitive measurements were accepted based on a 20% error margin. Patients with 4 or more measurements were included in the calculation. For evaluating the relationship between measurements, independent samples t-test in the sense of linear trend was calculated. SPSS version 22 (SPSS, Chicago, IL, USA) was used to calculate the independent t-test. p-value 0.05 was considered statistically significant.

Results

Fifty patients (mean age, 38 yrs), male and female patients (76% and 24%) with a body mass index (BMI) range of 17 to 35 cm (mean BMI 26.45), participated in the study. When the groups compared as a male-female patients and body mass index (BMI), there was a statistical difference between the smoker and non-smoker groups. (p=0.001) And there was a statistical difference within the smoker and non-smoker groups. (p=0.001) When the ABP measurements compared within the group. There was a statistical difference within non-smoker groups. (p<0.001), but there was a statistical difference within smoker groups. (p<0.05) Meaningful statistical differences were not found between contemporary arm-forearm and arm-ankle SBP and DBP measurements. Graphical displays of the results were presented in a Scatter/Dot chart. Between the arm, forearm, and ankle (Figure 1). For SBP measurements, mean value 114.89 mmHg of simultaneous arm measurements were within ± 25.86 mmHg. For DBP measurements, mean value 68.71 mmHg of simultaneous arm measurements were within ± 19.59 mmHg respectively (Table 1).

For SBP measurements, there was no statistical difference in simultaneous arm measurements between the smoker and non-smoker group (p=0.767), (95% Confidence Interval(CI) 92.57 to 103.63 mmHg). For DBP measurements, there was no statistical difference in simultaneous arm-forearm measurements between the smoker and non-smoker group (p=0.946), (95% CI 101.13 to 134.06 mmHg). For SBP measurements, there was no statistical difference in simultaneous ankle measurements between the smoker and non-smoker group (p=0.836), (95% CI 106.83 to 124.38 mmHg) respectively. For DBP measurements, there was no statistical difference in simultaneous arm measurements between the smoker and non-smoker group (p=0.751), (95% CI 82.86 to 91.09 mmHg). For DBP measurements, there was no statistical difference in simultaneous forearm measurements between the smoker and non-smoker group (p=0.781), (95% CI 60.82 to 83.17 mmHg). For SBP measurements, there was no statistical difference in simultaneous ankle measurements between the smoker and non-smoker group (p=0.840), (95% CI 55.56 to 65.50 mmHg) respectively (Table 2).
The essential components in directing intraoperative treatment.

Although this physiological conclusion is known, we determined to use SBP and DBP for comparison. In this arrangement, Walsh, M. et al. [11] proposed the use of SBP, not MAP in identifying. This recommendation was also based on the information that SBP was the most generally used parameter to define hypotension in patients [12], and studies in patients used changes in SBP as a definition of intraoperative hypotension [13]. However, in clinical anesthetic practice, the trend of ABP measurements is one of definition of intraoperative hypotension [13]. However, in clinical patients [12], and studies in patients used changes in SBP as a most generally used parameter to define hypotension in patients [12], and studies in patients used changes in SBP as a definition of intraoperative hypotension [13]. However, in clinical anesthetic practice, the trend of ABP measurements is one of the essential components in directing intraoperative treatment. Therefore, it is vitally important to know that there are significant differences in ABP measurement at different routes. But in our study, there was a statistical difference only within each group for SBP measurements.

Our study highlights the critical aspects of intraoperative hypotension. While most anesthesiologists consider intraoperative hypotension as a dynamic process [11], it should be taken into account that replacing the measurement site from the arm to another site, can be misleading. Also, it can be seen that consistency between arm-forearm and ankle measurements can be a guide for future measurement methods. It may also be essential to take into account future algorithms.

There is no consensus on how ABPs can best be perceived in terms of physiology and definition of hemodynamic variability in patients undergoing anesthesia [14,15]. At the same time, the frequency and duration of ABP measurement should be addressed. The explanation or conclusions of hemodynamic variability vary in different studies. It is understood that ABP values are continuously variable in intraoperative period. In this sense, it is important to obtain correct ABP values from alternative regions. That is why our study has completed the lack of study on this issue and we hope that the study will guide our colleagues.

Our study was limited to the fact that each ABP measurement was supposed to be an independent parameter and the number of measures was not equal for all participants and was based on the length of anesthesia and surgery. Almost a small sample size may be another limitation.

Conclusions

As a result, the forearm and ankle NIBP can be used as enough alternative to the widely accepted standard area for NIBP measurement. However, we think it would be beneficial to work with more detailed and larger patient groups.

Conflict of interest

The authors declare that there are no conflicts of interest.

Financial Disclosure

All authors declare no financial support.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Yasiro Tire ORCID:0000-0002-9905-8856
Mohamed Sargin ORCID:0000-0002-6574-273X
Aydin Mermer ORCID:0000-0002-9859-4737

References

5. Block FE, Schulte GT. Ankle blood pressure measurement, an acceptable...

